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Mathematics: applications and interpretation 
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Instructions to candidates

y Do not open this examination paper until instructed to do so.

y A graphic display calculator is required for this paper.

y Answer all the questions in the answer booklet provided.

y Unless otherwise stated in the question, all numerical answers should be given exactly or

correct to three significant figures.
y A clean copy of the mathematics: applications and interpretation formula booklet is

required for this paper.

y The maximum mark for this examination paper is [55 marks].
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Answer both questions in the answer booklet provided. Please start each question on a new page. 

Full marks are not necessarily awarded for a correct answer with no working. Answers must be 

supported by working and/or explanations. Solutions found from a graphic display calculator should 

be supported by suitable working. For example, if graphs are used to find a solution, you should sketch 

these as part of your answer. Where an answer is incorrect, some marks may be given for a correct 

method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 25]

This question explores how graph algorithms can be applied to a graph with an

unknown edge weight.

Graph  W  is shown in the following diagram. The vertices of  W  represent tourist attractions

in a city. The weight of each edge represents the travel time, to the nearest minute, between

two attractions. The route between A and F is currently being resurfaced and this has led to a

variable travel time. For this reason, AF has an unknown travel time  x  minutes, where   x ∈  ℤ   +   .
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(a) Write down a Hamiltonian cycle in  W . [1]

Daniel plans to visit all the attractions, starting and finishing at A. He wants to minimize his 

travel time.

To find a lower bound for Daniel’s travel time, vertex A and its adjacent edges are first deleted.

(b) (i)  Use Prim’s algorithm, starting at vertex B, to find the weight of the minimum

spanning tree of the remaining graph. You should indicate clearly the order in 

which the algorithm selects each edge. [5]

(ii) Hence, for the case where  x < 9 , find a lower bound for Daniel’s travel time,

in terms of  x . [2]

(This question continues on the following page)
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Turn over

(Question 1 continued)

Daniel makes a table to show the minimum travel time between each pair of attractions.

A B C D E F G H

A 3 9 14 19 or   (11 + x) 18 or  x 14 or   (5 + x) 10 or   (8 + x) 

B 6 11 16 or   (14 + x) 15 or   (3 + x) 11 or   (8 + x) 7

C 5 10 17 or   (9 + x) p 9

D 6 q  or   (r + x) 14 10

E 11 8 12

F 5 8

G 4

H

(c) Write down the value of

(i) p ; [1]

(ii) q ; [1]

(iii) r . [1]

To find an upper bound for Daniel’s travel time, the nearest neighbour algorithm is used, 

starting at vertex A.

[3]

[2]

(i) Find the least value of x for which the edge AF will definitely not be used by Daniel. [2]

(d) Consider the case where   x = 3  .

(i) Use the nearest neighbour algorithm to find two possible cycles.

(ii) Find the best upper bound for Daniel’s travel time.

(e) Consider the case where   x > 3  .

(ii) Hence state the value of the upper bound for Daniel’s travel time for the value of

x  found in part (e)(i). [2]

The tourist office in the city has received complaints about the lack of cleanliness of some 

routes between the attractions. Corinne, the office manager, decides to inspect all the routes 

between all the attractions, starting and finishing at H. The sum of the weights of all the 

edges in graph  W  is   (92 + x)  .

Corinne inspects all the routes as quickly as possible and takes 2 hours.

(f) Find the value of  x  during Corinne’s inspection. [5]
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2. [Maximum mark: 30]

This question explores models for the height of water in a cylindrical container as

water drains out.

The diagram shows a cylindrical water container of height 3.2 metres and base radius 1 metre.

At the base of the container is a small circular valve, which enables water to drain out.

diagram not to scale

3.2

1

Eva closes the valve and fills the container with water.

At time   t = 0  , Eva opens the valve. She records the height,  h  metres, of water remaining in 

the container every 5 minutes.

Time,  t  (minutes) Height,  h  (metres)

0 3.2

5 2.4

10 1.6

15 1.1

20 0.5

Eva first tries to model the height using a linear function,   h(t ) = at + b  , where   a ,  b ∈ ℝ​ .

(a) (i)  Find the equation of the regression line of  h  on  t . [2]

(ii) Interpret the meaning of parameter  a  in the context of the model. [1]

(This question continues on the following page)
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Turn over

(Question 2 continued)

Eva uses the equation of the regression line of  h  on  t , to predict the time it will take for all 

the water to drain out of the container.

(iii) Suggest why Eva’s use of the linear regression equation in this way could be

unreliable. [1]

Eva thinks she can improve her model by using a quadratic function,   h(t ) = p  t   2  + qt + r  , 

where   p ,  q ,  r ∈ ℝ  .

(b) (i)  Find the equation of the least squares quadratic regression curve. [1]

Eva uses this equation to predict the time it will take for all the water to drain out of the 

container and obtains an answer of  k  minutes.

(ii) Find the value of  k . [2]

(iii) Hence, write down a suitable domain for Eva’s function   h(t ) = p  t   2  + qt + r  . [1]

Let  V  be the volume, in cubic metres, of water in the container at time  t  minutes. 

Let  R  be the radius, in metres, of the circular valve.

Eva does some research and discovers a formula for the rate of change of  V .

   dV ___ 
dt

   = −π R   2   √ 
_

70 560 h 

(c) Show that     dh __ 
dt

   = − R   2   √ 
_

70 560 h     . [3]

(d) By solving the differential equation     dh __ 
dt

   = − R   2   √ 
_

 70 560 h     , show that the general solution

is given by   h = 17 640   (c −  R   2  t)    
2

   , where   c ∈ ℝ  . [5]

Eva measures the radius of the valve to be 0.023 metres. Let   T   be the time, in minutes, 

it takes for all the water to drain out of the container.

(e) Use the general solution from part (d) and the initial condition   h(0) = 3.2   to predict the

value of  T . [4]

Eva wants to use the container as a timer. She adjusts the initial height of water in the 

container so that all the water will drain out of the container in 15 minutes.

(f) Find this new height. [3]

(This question continues on the following page)
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(Question 2 continued)

Eva has another water container that is identical to the first one. She places one water 

container above the other one, so that all the water from the highest container will drain 

into the lowest container. Eva completely fills the highest container, but only fills the lowest 

container to a height of 1 metre, as shown in the diagram.

diagram not to scale

1

1

3.2

1

At time   t = 0   Eva opens both valves. Let  H  be the height of water, in metres, in the lowest 

container at time  t .

(g) (i)  Show that     dH ___ 
dt

   ≈ 0.2514 − 0.009873t − 0.1405  √ 
_

 H    , where   0 ≤ t ≤ T  . [4]

(ii) Use Euler’s method with a step length of 0.5 minutes to estimate the maximum

value of  H . [3]
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